Right-Sizing The Cooling Tower

To maximize water-based cooling tower performance, identify several critical factors to choose most appropriate size.

Cooling towers are a relatively inexpensive and reliable way of expelling heat from a number of industrial processes, including nuclear and thermal power plants, petroleum refineries, petrochemical plants, food processing plants, as well as HVAC systems. For facility management professionals, the question presents itself: How large should a cooling tower be to efficiently handle a specific application?

“There are a lot of different applications where you certainly don’t want an undersized cooling tower,” says John Flaherty, president of Delta Cooling Towers, a company that manufactures a broad line of HDPE (high-density polyethylene) engineered plastic tower models.

“For example, if an undersized cooling tower is not producing cold enough water to cool the condenser loop of an office building’s HVAC chiller, then the chiller could shut down. That would probably mean some expensive repairs plus a lot of angry tenants.”

cooling tower
Photo: Delta Cooling Towers

On the industrial side, Flaherty advises that insufficient tower cooling capacity can cause breakdowns or even severe damage to costly process equipment, resulting in extensive losses in productivity. In fact, determining the minimum size for most any application is critical.

Cooling Tower Sizing

Cooling towers are known, generally, for their ability to expel “waste” heat from an industrial process or the condenser in a comfort cooling application. Wet cooling towers achieve this function through evaporating a small portion of the recirculating water, resulting in significant cooling of the returning water to the process.

For most wet cooling tower applications, optimum cooling tower size may be determined by a combination of four different metrics:

  1. Heat Load
  2. Range
  3. Approach
  4. Wet Bulb Temperature

In order to understand how these factors influence cooling tower size, it is first necessary to give the terms some context.

The wet bulb temperature (WBT) of the air entering the cooling tower is an independent variable that is a fundamental factor in dictating the appropriate size of a cooling tower. It is both the theoretical limit to the exiting cooled water temperature and the only specific air parameter necessary in cooling tower selection. In sizing a cooling tower, the highest WBT expected temperature is used for very hot, humid climates.

The thermal performance of mechanical draft towers is barely affected by relative humidity or by the Dry Bulb Temperature (true thermodynamic temperature) of the entering air. For mechanical draft towers, the amount of mass airflow (generated by fans) constitutes much of the hot-water-cooling capacity of the tower.

Dry Bulb temperature and relative humidity do have a major effect on the performance of natural draft towers, those without fans.

The difference between the WBT and the cooled water temperature is called the approach temperature (or simply, “Approach”). Approach temperatures generally fall between 4° and 20°F. As the Approach temperature drops, the required cooling tower size increases exponentially. However, many cooling tower manufacturers do not guarantee tower performance when Approach temperature is less than 5°F.

The difference between the tower’s hot water temperature (water leaving the hot machinery) and the cold water temperature is called the “Range.” Along with WBT and Approach, Range also affects cooling tower size requirements. The Heat Load varies directly with Range and GPM (gallons per minute) flow rate.

“When three of four sizing factors are held constant, the requirement for cooling tower size varies directly with Heat Load, but inversely with Range, Approach, and Wet Bulb Temperature,” Flaherty explains. “So, there can be several design decisions to make that will impact the ultimate size of the required cooling tower.”

Efficiency Matters

Flaherty adds that maintaining cooling tower efficiency is important to most applications. In many cooling towers, particularly the wet metal-clad models, cooling efficiency is compromised when necessary aggressive chemical treatments are limited due to the risk of damage to metal surfaces. Also, chemicals such as those used to rid water of biological growth can cause fouling buildup inside the tower, which reduces cooling efficiency.

When operating with HDPE towers, the water can be treated more aggressively, and concerns of corrosion problems are not an issue, because HDPE cooling towers is they are impervious to corrosion. The corrosives present in salt water air or the caustic atmosphere of many industrial sites continuously attack metal-clad towers. Because HDPE towers are unaffected by corrosives, they require little maintenance and provide a longer service life.

Cooling tower efficiency can also be affected by tower footprint. “Some companies choose a tower with a smaller footprint to conserve on space,” Flaherty notes. “But that may require using more power to drive the tower, and energy savings is high on a lot of companies’ priorities. So, in those cases, a cooling tower with a bigger footprint may consume much less energy, and therefore would be the more efficient choice.”

Flaherty adds that for most industrial and commercial applications, it is highly beneficial to consult with an experienced cooling tower engineer before finalizing plans to purchase a tower for a facility.


  1. Thank you for letting me know that cooling towers and wet cooling towers achieve expelling “waste” heat. There is a facility that is having problems with cooling. Thank you for sharing this article about what type of sizing is also right for my facility. I’ll need to find a service that can install a cooling tower for me.

Comments are closed.